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Abstract

In this paper, natural convection around a tilted heated square cylinder kept in an enclosure has been studied in the range of
103
6 Ra 6 106. Streamfunction-vorticity formulation of the Navier–Stokes equation is solved numerically using finite-difference method

in non-orthogonal body-fitted coordinate system. Detailed flow and heat transfer features for two different thermal boundary conditions
are reported. Effects of the enclosure geometry has been assessed using three different aspect ratio placing the square cylinder at different
heights from the bottom. The concept of heatfunction has been employed to trace the path of heat transport. It is found that the uniform
wall temperature heating is quantitatively different from the uniform wall heat flux heating. Flow pattern and thermal stratification are
modified, if aspect ratio is varied. Overall heat transfer also changes for different aspect ratio.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The phenomenon of natural convection in enclosure has
been a subject of research over the years. Numerous refer-
ences [1–3] deal with enclosures with flat walls due to its rel-
evance to large scale natural phenomena in the fields of
astrophysics, geophysics, atmospheric sciences and a wide
range of engineering applications such as cooling of elec-
tronic equipments, solidification processes, growing crys-
tals and solar collectors. They admit complex interactions
between the finite fluid content inside the enclosure with
the enclosure walls.

A large number of literature is available which deal with
the study of natural convection in enclosures [4–8] with
either vertical or horizontal imposed heat flux or tempera-
ture difference. Hadjisophocleous et al. [9] solved the
natural convection of a square cavity problem by non-
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orthogonal boundary fitted coordinate system. However,
they compared their results with that of de Vahl Davis [1]
and Markatos and Perikleous [2] which is a regular geom-
etry problem.

Buoyancy driven flow and heat transfer between a cylin-
der and its surrounding medium has been a problem of
considerable importance. This problem has a wide range
of applications. Energy storage devices, crop dryers, crude
oil storage tanks, heat exchangers, spent fuel storage of
nuclear power plants are a few to name. Larson et al.
[10] carried out experimental study of temperature field
around a heated horizontal cylindrical body in an isother-
mal rectangular enclosure. Roychowdhury et al. [11]
analyzed the natural convective flow and heat transfer fea-
tures for a heated cylinder kept in a square enclosure with
different thermal boundary conditions. Elepano and Oos-
thuizen [12] carried out numerical study of natural convec-
tive flow in an enclosure containing a heated cylinder and a
cooled upper surface. A majority of the available studies
[13–15] deal with natural convective flow and heat transfer
around a circular cylinder kept inside an enclosure. There
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Nomenclature

A aspect ratio (=H/L)
a side of the cylinder
g gravitational acceleration
H height of the enclosure
h height of the cylinder from the bottom wall
J Jacobian
k thermal conductivity
L length of the enclosure
l local coordinate along the cylinder
Nu Nusselt number
Pr Prandtl number
P, Q grid control functions
qo specified heat flux
Ra Rayleigh number
T dimensional temperature
Dt time increment
U, V dimensionless contravariant velocity compo-

nents in n- and g-direction
u, v velocity components in x- and y-direction
x, y Cartesian coordinates

Greek symbols

m dynamic viscosity
af thermal diffusivity

bf volumetric thermal expansion coefficient
a, b, c geometric relations between coordinate systems
n, g curvilinear coordinates
x vorticity
w streamfunction
h dimensionless temperature
U heat function

Subscripts

av average
c cold wall
h hot wall
l local
max maximum
t, x, y, n, g partial derivative relative to t, x, y, n, g,

respectively

Superscripts

* non-dimensional quantities
n time stepping index

Fig. 1. Geometry describing the physical problem.
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has been little study on the natural convection process with
tilted heated cylinder inside an enclosure with cold side
walls.

From application point of view, for electronic modules
encapsulated inside a cabinet, the cooling effectiveness
depends on the wall effect. It can be studied by modeling
a heated square cylinder placed inside an enclosure. Natu-
ral convection in an enclosure containing a tilted heated
cylinder is of interest in the present study. This configura-
tion is different from the heated horizontal cylinder case
from two different view points. Firstly, reduction in the
blockage inside the enclosure facilitates the formation of
convection rolls. Secondly, the more streamlined shape of
the cylinder favors the development of the boundary layer
and more interestingly its interaction with the core fluid.
This configuration has been extensively studied for two dif-
ferent thermal extremities described in the next section.
Flow and heat transfer has been analyzed using convection
roll patterns and temperature variation inside the enclo-
sure. Numerical visualization of heat transfer has been
attempted by the concept of heatlines.

2. Problem specification

Fig. 1 shows the geometry in which natural convective
heat transfer is studied in the present work. It consists of
an enclosure having insulated horizontal and cold vertical
walls containing air (Pr = 0.71) as working fluid. A heated
cylinder is placed at the center of the enclosure in a pris-
matic orientation.

Only one half of the geometry is chosen as the computa-
tional domain due to symmetry. Fig. 2 shows the computa-



(a) (b)

Fig. 2. Computational model with boundary conditions (a) Case 1, (b) Case 2.

Fig. 3. A typical numerical grid (51 · 101) for A = 1, h = 0.5.
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tional domain with appropriate boundary conditions. Two
modes of heating is considered in the present study. Case 1
refers to the situation with isothermal cylinder (Fig. 2(a))
while Case 2 refers to the uniform heat flux (Fig. 2(b)).

3. Mathematical formulation

The equations governing fluid flow and heat transfer in
two dimension are written below in streamfunction-vortic-
ity formulation. These equations are obtained after invok-
ing Boussinesq approximation

xt þ ðuxÞx þ ðvxÞy ¼ m xxx þ xyy

� �
þ gbT x ð1Þ

T t þ ðuT Þx þ ðvT Þy ¼ a T xx þ T yy

� �
ð2Þ

wxx þ wyy ¼ �x ð3Þ
u ¼ wy ; v ¼ �wx ð4Þ

Boundary conditions applicable in the present study are
shown in the figure describing the physical problem
(Fig. 2). The following scales are taken for the normaliza-
tion of the above equations

x� ¼ x
H
; y� ¼ y

H
; u� ¼ uH

a
; v� ¼ vH

a
; t� ¼ at

H 2
;

x� ¼ xH 2

a
; w� ¼ w

a
; h ¼ T � T c

T h � T c
for Case 1 and

h ¼ kðT � T cÞ
qoH

for Case 2 ð5Þ

Using general curvilinear coordinates x = x(n,g),
y = y(n,g), the set of non-dimensional transformed equa-
tions are

xt þ
1

J
ððUxÞn þ ðV xÞgÞ ¼ Prr2xþ 1

J
RaPrðyghn � ynhgÞ

ð6Þ

ht þ
1

J
ððUhÞn þ ðV hÞgÞ ¼ r2h ð7Þ
r2w ¼ �x ð8Þ

u ¼ 1

J
ð�xgwn þ xnwgÞ; v ¼ 1

J
ð�ygwn þ ynwgÞ ð9Þ

where U = ygu � xgv and V = �ynu + xnv are the contra-
variant velocity components in n- and g-directions
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respectively and J is the Jacobian of the transformation de-
fined as J = xnyg � ynxg. The Laplacian of a generic scalar
/ in the transformed plane is given as

r2/ ¼ 1

J 2
ða/nn þ b/ng þ c/ggÞ þ

1

J 3
½ð�ygAþ xgBÞ/n

þ ðynA� xnBÞ/g� ð10Þ

where a ¼ x2
g þ y2

g, c ¼ x2
n þ y2

n, b = �2(xnxg + ynyg),
A = axnn + bxng + cxgg and B = aynn + byng + cygg.

4. Numerical technique

In this section numerical method adopted in the present
study is discussed.

4.1. Grid generation

In the present study curvilinear body-fitted grids have
been generated by solving Poisson equations for the curvi-
linear coordinates given as
Table 1
Comparison of present solutions using orthogonal grid with benchmark resul

a b c

(a) Ra = 105

umax 34.73 (0.855) 35.73 (0.857) 37.
vmax 68.59 (0.066) 69.08 (0.067) 68.
wmax 9.612 (0.285,0.601)
Nu 4.519 4.430 4.

(b) Ra = 106

umax 64.63 (0.850) 68.81 (0.872) 66.
vmax 217.36 (0.0379) 221.8 (0.0375) 226.
wmax 16.75 (0.151,0.547)
Nu 8.799 8.754 10.

a: solution of Vahl Davis [1]; b: solution of Markatos and Perikleous [2]; c: so

Table 2
Comparison of present solutions using non-orthogonal grid with benchmark r

Pr a

Nuav 5.98493
0.1 Numax 8.6778 (0.45644)

wmin �9.68706 · 10�3 (0.78926,0.178134)

Nuav 7.58013
10 Numax 12.471 (0.17028)

wmin �1.662127 · 10�3 (0.57276,0.319989)

a: solution of Demirdžić et al. [20]; b: present solution on 121 · 121 grid.

Table 3
Comparison of results at several grids for Ra = 104, A = 1 and h = 0.5

Grid wmax wmin Numax
* % chang

31 · 61 1.00014 �0.49277 15.6265
41 · 81 1.00012 �0.49091 17.2532 10.41
51 · 101 1.00008 �0.48870 18.6184 7.91
61 · 121 1.00006 �0.48811 19.8122 6.41

* Hot wall.
** Cold wall.
r2n ¼ P ðn; gÞ ð11Þ
r2g ¼ Qðn; gÞ ð12Þ

where P and Q are the control functions required to retain
the desired grid density in the domain. The above two
equations can be written as below with the physical coordi-
nates as the dependent variables
axnn þ bxng þ cxgg þ J 2ðPxn þ QxgÞ ¼ 0 ð13Þ
aynn þ byng þ cygg þ J 2ðPyn þ QygÞ ¼ 0 ð14Þ
In the present study control functions are used to maintain
a desired grid density near the cylinder alleviating the prob-
lem of poor grid distribution near a concave surface using
elliptic grid generation technique [16]. Eqs. (13) and (14)
are solved by SOR method. All the derivatives are discret-
ized using second order central difference scheme and the
non-linearity is resolved through iterations. A typical gen-
erated grid is shown in Fig. 3.
ts

d a� d
a
� 100

144 (0.855) 34.798 (0.850) �0.196
91 (0.061) 68.340 (0.067) 0.364

9.497 (0.283,0.6) 1.2
964 4.479 0.885

42 (0.897) 66.948 (0.850) �3.587
4 (0.0206) 219.663 (0.033) �1.060

16.455 (0.15,0.55) 1.76
39 9.312 �5.830

lution of Hadjisophocleous et al. [9]; d: present solution on 61 · 61 grid.

esults

b a� b
a
� 100

5.97085 0.24
8.6628 (0.44999) 0.17
�9.6679 · 10�3 (0.78511,0.17677) 0.20

7.59479 �0.19
12.606 (0.16666) �1.08
�1.66587 · 10�3 (0.57409,0.32409) �0.23

e Nuav
* % change Nuav

** % change

4.605 �2.271
4.415 4.13 �2.206 2.86
4.255 3.62 �2.160 2.09
4.129 2.96 �2.122 1.76
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4.2. Discretization technique and method of solution

The system of governing (Eqs. (6)–(9)) are solved by
finite difference method in the transformed plane. All the
spatial discretization is done with the second order central
difference scheme except for the convective terms in the two
transport equations which utilize standard QUICK
scheme. A semi-implicit time integration scheme is adopted
in the present study to advance the vorticity and tempera-
ture values in time. The vorticity transport equation and
the energy equation both having non-linear convective
terms are linearized as follows:

J
hnþ1

i;j � hn
i;j

Dt
þ ðU nhnþ1Þi;j þ ðV nhnþ1Þi;j ¼ Jðr2hnþ1Þi;j ð15Þ

J
xnþ1

i;j � xn
i;j

Dt
þ ðU nxnþ1Þi;j þ ðV nxnþ1Þi;j

¼ JPrðr2xnþ1Þi;j þ JRaPrðyghn � ynhgÞnþ1
i;j ð16Þ

The Laplacian in the above equations has already been
written in Eq. (10). Discretized form of Eqs. (15) and
(16) have been solved by SOR technique as they take a
few iterations to converge due to the diagonal dominance.
The system of linear equations arising from the discretiza-
tion of the Poisson equation for the streamfunction is
solved by the stabilized Bi-Conjugate Gradient Method
(BiCGSTAB) [17]. This technique falls in the category of
matrix free Krylov space based method which efficiently
exploits the sparse structure of the coefficient matrix. Solu-
tion of all system of linear equations are terminated when l2
norm of error of the equations reach a pre-assigned value �
which is 10�5 for two transport equations and 10�6 for the
Poisson equation. A time increment Dt = 10�5 has been
used for Ra = 103–105 and 5 · 10�6 for Ra = 106.

The definition of vorticity has been used to compute
boundary vorticity with partial derivatives of the velocities
are discretized by second order accurate one-sided formu-
las. This is as follows:

xb ¼ ðvx � uyÞb ¼
1

J
ðygvn � ynvg þ xgun � xnugÞ

� �
b

Local Nusselt number at the right wall and on the cylin-
der has been calculated by the following expression [18]:

Side wall: Nul ¼
1

J
ffiffiffi
a
p ðaT n � cT gÞ

Cylinder wall: Nul ¼
�1

J
ffiffiffi
a
p ðaT n � cT gÞ
 Case 1 Case 2

Fig. 4. Isotherms for pure conduction, A = 1, h = 0.5.
4.3. Heatline

In analogy to the streamfunction in two-dimension,
heatfunction U(x,y) is defined in non-dimensional from
as [19]

� Ux ¼ vh� hy ð17Þ
Uy ¼ uh� hx ð18Þ
Elimination of the gradient terms by cross differentiation of
the above two equations, yields a conduction type equation

Uxx þ Uyy ¼ ðuhÞy � ðvhÞx ð19Þ

In the transformed plane, definition equations of heatlines
take the form

� Un ¼ V h� 1

J
chg þ

b
2

hn

� �
ð20Þ

Ug ¼ Uh� 1

J
ahn þ

b
2

hg

� �
ð21Þ

and the conduction-type equation becomes

r2U ¼ S ð22Þ

where S ¼ 1
J ½�ðuhÞnxg þ ðuhÞgxn � ðvhÞnyg þ ðvhÞgyn� and

the Laplacian in the transformed plane has been given in
Eq. (10). Eq. (22) has been solved for the heatfunction with
the following boundary conditions derived from its defini-
tions (Eq. (20) or (21)). In deriving the boundary condi-
tions, the bottom left corner of the enclosure has been
taken as the reference point where the value of heatfunc-
tion is zero

Uðx;0Þ¼ 0; 06 x6
L
2

U
L
2
;y

� �
¼�

Z y

0

hx dy¼�
Z y

0

1

J
ðhnyg�hgynÞdg; 06 y6H

Uð0;yÞ¼ 0; 06 y6 h� affiffiffi
2
p



Fig. 5. Streamlines and isotherms for Case 1, A = 1.
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Fig. 6. Local Nusselt number distribution for Case 1, A = 1.
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Fig. 7. Average Nusselt number for Case A = 1: (a) on the cylinder, (b) on the side wall.

Fig. 8. Heatlines for A = 1, h = 0.5.
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Fig. 9. Streamlines and isotherms for Case 2, A = 1.
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Fig. 10. Local surface temperature distribution on the cylinder for Case 2,
A = 1.

Fig. 11. Local Nusselt number distribution on the side wall for Case 2,
A = 1: (a) h = 0.5, (b) h = 0.25, (c) h = 0.75.

A. Kumar De, A. Dalal / International Journal of Heat and Mass Transfer 49 (2006) 4608–4623 4617



4618 A. Kumar De, A. Dalal / International Journal of Heat and Mass Transfer 49 (2006) 4608–4623
Uð0;yÞ¼�
Z hþ affiffi

2
p

h� affiffi
2
p

1

J
ahnþ

b
2
hg

� �
dg; h� affiffiffi

2
p 6 y6 hþ affiffiffi

2
p

Uð0;yÞ¼U 0;hþ affiffiffi
2
p

� �
; hþ affiffiffi

2
p 6 y6H

Uðx;HÞ¼Uð0;HÞ; 06 x6
L
2

4.4. Computer code validation

The computer code developed for the present study is
validated for natural convection in a differentially heated
cavity both for an orthogonal and non-orthogonal config-
urations at different Rayleigh numbers. Table 1 shows the
comparison with the numerical results of Vahl Davis [1]
and others [2,9] for the orthogonal configuration where
results match closely for Ra = 105 while they are acceptable
range for Ra = 106. An excellent match has been found for
the non-orthogonal case with Demirdžić et al. [20], as can
be seen from Table 2, where difference only goes beyond
1% for Numax at Pr = 10.

4.5. Grid independence test

To see the effect of size of the numerical grid, a thorough
grid independence test has been carried out for Case 1 with
Ra = 104. Four levels of grids namely, 31 · 61, 41 · 81,
51 · 101, 61 · 121 have been tested and the results are tab-
ulated in Table 3. It has been observed that as the grid is
refined, variation in the results between two successive
grids decreases. For the two finest level of grids, difference
in Numax on the cylinder is 6.41% while Nuav changes only
2.96%. However, variation in Nuav on the side wall remains
below 2% for the two finest grid levels. This has lead us to
use 51 · 101 for A = 1, 25 · 101 for A = 2, 61 · 101 for
A = 0.5 in all subsequent calculations considering relative
cost of computation with achievable accuracy.
5. Results and discussion

The results are presented for a number of cases corre-
sponding to two different thermal boundary conditions,
geometric aspect ratio and the position of the heated cylin-
der. The basic features of flow and heat transfer are ana-
lyzed with the help of isotherms and the streamline
patterns. Heatlines are also shown to further investigate
the mode of heat transfer. Local and average Nusselt num-
bers on the isothermal surfaces are plotted to evaluate the
local and overall heat transfer process.
Fig. 12. Average Nusselt number on the side wall for Case 2, A = 1.
5.1. Basic flow and heat transfer features

Fig. 4 shows isotherms for the pure conduction problem.
We first take up Case 1. As it can be seen from Fig. 5, tem-
perature distribution inside the enclosure deviates signifi-
cantly from the pure conduction case at higher Rayleigh
numbers emphasizing the prevalence of buoyancy induced
convection. Since the cylinder is kept heated, the hot fluid
is pumped in by the cylinder and rises upward near the ver-
tical mid plane of the enclosure due to thermal expansion.
This hot fluid moves horizontally toward corners after
impinging on the roof. Finally, the colder and thus denser
fluid descends along the cold side walls as it comes in con-
tact with cooled fluid away from the cylinder. As Rayleigh
number increases, isotherms are distorted and the forma-
tion of the thermal boundary layer on the cylinder surface
from the bottom to the top and on the enclosure-side wall
from the top to the bottom is prominent. This feature is
identical for all the positions of the cylinder and leads to
a stable stratification at the core of the enclosure at high
Rayleigh number. The denser streamlines near the enclo-
sure wall and the cylinder and relative absolute values show
the stronger convective flow at higher Rayleigh numbers.
While the flow pattern changes from a bi-cellular to an
uni-cellular form at high Rayleigh number for h = 0.5, no
such behavior is found for other two positions of the cylin-
der. For h = 0.75, flow is primarily confined to the upper
half of the enclosure leaving a lump of cold fluid at the bot-
tom half showing poorer mixing compared to the other two
cases. The presence of high temperature gradient in both
the isothermal walls at high Rayleigh number leads to
higher local Nusselt number as is evident from Fig. 6. A
sharp peak in the local Nusselt number is visible
(Fig. 6(a)–(c)) which occurs due to the sharp variation of
the metric coefficients at the tip of the cylinder leading to
a high temperature gradient. On the isothermal cold wall
(Figs. 6(d)–(f)) local Nusselt number hardly varies for
lower Rayleigh numbers due to the absence of a prominent
thermal boundary layer. However, at higher Rayleigh



Fig. 13. Streamlines and isotherms for A = 0.5.
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numbers Nul increases in absolute value in the direction of
development of the thermal boundary layer. Note that Nul

is negative in Figs. 6(d)–(f) as heat is released by the enclo-
sure through the cold wall. Average Nusselt number on the
cylinder and the side wall are plotted against Rayleigh
number for different cylinder positions in Fig. 7(a) and
(b) respectively. Heat exchange between fluid and the walls
enhances for the higher Rayleigh numbers as absolute
value of Nuav increases with Rayleigh number. Nuav–Ra

curves change slowly for Ra 6 104 and almost linearly for
Ra > 104. Nuav for h = 0.75 is quantitatively lesser com-
pared to h = 0.25 and 0.5 owing to poor mixing and heat
transfer from the isothermal walls, a fact already been dis-
cussed in accordance with Fig. 5. This underlines the effect
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of position of the cylinder in the overall heat transfer
process.

Heatlines, the path of heat transport is shown in Fig. 8
for two different thermal boundary conditions. There are
certain similar characteristics between the streamlines and
the heatlines. Analogous to the streamlines, heatlines also
start and stop at boundaries or circulate as vortex. Its value
is of relativity, depending on the reference value assumed in
the calculation. As depicted in the figure, heat transfer is
conduction dominated at lower Rayleigh numbers which
is evident from the almost straight and evenly spaced heat-
lines. The arrow in the figure shows the direction of heat
transport. As Rayleigh number increases, heatlines bend
toward the upper half of the enclosure owing to the strong
convection effect leading to non-uniform distribution of
heat flux on the isothermal surfaces. This strengthens the
occurrence of convection dominated heat transfer mecha-
nism at higher Rayleigh numbers. The crowded pattern
of the heatlines in the upper half of the enclosure confirms
Fig. 14. Streamlines and
that flow occurs along the walls leaving a stagnant strati-
fied pool of fluid in the core. The non-uniformity of the
heatflux manifests in higher temperature gradient on the
isothermal walls leading to higher local Nusselt number,
a fact already been observed. The smaller values of heat-
functions in case of uniform heat flux (Case 2) signifies
the attenuation of heat transfer between the isothermal
walls. The dominance of convection over conduction is
brought forth at relatively higher Rayleigh numbers as
compared to Case 1. Moreover, the presence of a thin ther-
mal boundary layer and non-uniform distribution of heat
flux on the isothermal surfaces and confinement of heat
carrying fluid in the upper half of the enclosure are less evi-
dent for Case 2.

5.2. Effect of thermal boundary condition

Although the basic flow and heat transfer features do
not change significantly for the two different heating
isotherms for A = 2.



Fig. 15. Local Nusselt number distribution with h = 0.5 for Case 1 (a)
cylinder, (b) side wall and Case 2 (c) side wall.

Fig. 16. Local surface temperature distribution on the cylinder for Case 2,
h = 0.5.
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modes, distribution of isotherm (Fig. 9) is quantitatively
different for Case 2. In the absence of any perceivable ther-
mal boundary layer, vertical stratified layers are seen even
at Ra = 105 for Case 2 with h = 0.25 and h = 0.5. As Ray-
leigh number increases, heated fluid layers are observed to
exist close to the cylinder showing lesser heat transfer from
the cylinder in case of constant heat flux heating. Also
dominance of convection at higher Rayleigh numbers is
less evident for this type of heating as can be seen from
numerical values of w. Fig. 10 depicts the local temperature
distribution on the cylinder. Temperature distribution
along the cylinder is almost symmetric about its tip at
lower Ra while it becomes increasingly asymmetric with
increase in Ra owing to better accumulation of the fluid
in the converging passage near the lower half of the cylin-
der for h = 0.5. The narrow passage near the adiabatic hor-
izontal wall prevents the fluid to come in contact with the
cylinder leading to higher temperature on the cylinder face
close to the wall for h = 0.25 and 0.75. At higher Rayleigh
numbers temperature drops on the cylinder surface show-
ing better heat removal with minimum temperature occur-
ring at the highest Rayleigh number. Local Nusselt number
distribution on the cold wall is shown in Figs. 6(d)–(f) and
11 for the two cases with different h. It is clear that due to
ineffective heat transfer for Case 2 heating, local Nusselt
number hardly changes as compared to the Case 1 which
is also confirmed by the average Nusselt number plots
(Figs. 7(b) and 12) for the two cases at different Rayleigh
numbers. At smaller Rayleigh numbers local Nusselt num-
ber does not change significantly along the side wall while
at higher Rayleigh numbers, due to the higher temperature
gradient at the upper half of the enclosure Nusselt number
decreases in the direction of the cold fluid descend.



Fig. 17. Average Nusselt number distribution for different aspect ratios,
h = 0.5: Case 1 (a) cylinder, (b) side wall and Case 2 (c) side wall.
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5.3. Effect of aspect ratio

In order to assess the effect of geometric aspect ratio of
the enclosure, three different configurations, A = 0.5, 1 and
2 have been studied in the present work. Figs. 13 and 14
show the streamlines and isotherms for A = 0.5 and 2
respectively. For the highest aspect ratio, flow is observed
to be bi-cellular at all Rayleigh numbers showing existence
of multicellular natural convection loops in tall vertical
enclosures. At the lowest aspect ratio, due to the lowest
blockage imposed by the cylinder, streamlines and iso-
therms closely resemble the flow features of the differen-
tially heated vertical cavity nullifying to some extent the
presence of the heated cylinder. The pattern of convective
cells are found to be quite similar for the two lowest aspect
ratios. The distribution of isotherms is distinctively differ-
ent for all the three aspect ratios. At A = 2, isotherms are
concentric in shape and varies radially at low Rayleigh
number. Almost stagnant vertical stratified layers switches
to horizontal layers with the increase in Rayleigh number
for A = 0.5 showing that the convecting fluid remains close
to the isothermal surfaces and heat transfer is confined
there. Local Nusselt number distribution on the cylinder
(Fig. 15(a)) remains almost identical for different aspect
ratio with the maximum Nusselt number, occurring at
the tip, increases as the side wall moves close to the cylin-
der. Local Nusselt number on the cold wall as shown in
Figs. 15(b) and (c) decreases monotonically along the sur-
face for A = 0.5 and 1 but is different for A = 2. This hap-
pens because as aspect ratio increases, the cold wall comes
closer to the cylinder and the descending cold fluid is made
to pass through a small gap leading to a high temperature
gradient which shows up as a peak in the local Nusselt
number distribution. This is also the reason why tempera-
ture on the cylinder for Case 2 is different for A = 2 as com-
pared to A = 0.5 and 1 which are quite similar (Fig. 16).
Average Nusselt number on the cylinder, the side wall for
Case 1 and only on the side wall for Case 2 are shown in
Fig. 17(a)–(c) respectively. The difference in absolute value
of average Nusselt number among aspect ratios decreases
with increase in Rayleigh number for Case 1 indicating
strong buoyancy induced convection overwhelms geomet-
ric features. However, Nuav does not change significantly
for different aspect ratios owing to inferior heat transfer
as already observed for Case 2.

6. Conclusions

A numerical study has been carried out for natural
convective flow and heat transfer around a tilted heated
cylinder kept in an enclosure with cooled side walls. The
numerical code thus developed has been validated against
the benchmark solutions. Detailed parametric study
involving the effects of thermal boundary conditions, loca-
tion of the heated cylinder and geometric aspect ratio have
been reported. The concept of heatfunction has been
employed to identify the path of heat transport. Based on
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the observations made during the study, the authors pro-
pose the following:

• Constant wall temperature heating is efficient in com-
parison to the constant wall heat flux mode in view of
overall heat transfer for the present physical situation.

• Location of the heated cylinder does not play an impor-
tant role which is confirmed by both local and average
Nusselt numbers for Case 1.

• For geometry with higher aspect ratio, flow is essentially
multicellular at all Rayleigh numbers. Due to the avail-
ability of small passage for the ascending and descend-
ing fluid, location of the cylinder becomes important
leading to different trend in the local Nusselt number
distribution.

• Change in overall heat transfer for different aspect ratios
is found in the lower Rayleigh numbers while it dimin-
ishes as Rayleigh number is increased for Case 1.
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[18] M.N. Özisik, Finite Difference Methods in Heat Transfer, CRC Press,
London, 1994.

[19] Q.H. Deng, G.F. Tang, Numerical visualization of mass and heat
transport for conjugate natural convection/heat conduction by
streamline and heatline, Int. J. Heat Mass Transfer 45 (5) (2002)
2373–2385.
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